Senin, 26 Maret 2012

Bellamore

Bellamore
Teman, mari kubisikkan padamu
Kisah tentang sebuah keindahan cinta 
Yang pernah hadir menghangatkan hatiku
Dengan membawa beribu rasa bagi sang jiwa.
Namun ternyata takdir rahasia yang tak dapat kupahami dengan pasti.
Cinta itu pun terenggut dariku membawa semua asa
Serta menorehkan luka pada jiwa nan sepi ini.
Kukira takkan pernah kumiliki lagi sebuah cinta
dengan keindahan yang mampu membuatku terlena.
Namun takdir memang memiliki sebuah rahasia
Yang akhirnya dapat kupahami sepenuhnya.
Jadi marilah kuingatkan kembali padamu
Akan pepatah tua yang pernah berkata
Bahwa mencintai seseorang tak harus selalu diberangi dengan memiliki raganya semata.
Dan inilah yang kini menjadi pemahamanku.
Walau telah kumiliki cinta sejati yang baru,
Namun kutahu cinta yang pernah kumiliki dulu akan selalu menjadi bagian dari kenanganku.
Bellamore
Beautiful love.
Dan itulah kisahku tentang keindahan cinta yang kerlipnya akan hidup dihati selamanya.....!!!

Selasa, 20 Maret 2012

Sejarah Terbentuknya Alam Semesta (Bumi)

Sejarah Terbentuknya Alam Semesta

Harso Adjie Broto
http://i.space.com/images/i/12750/i02/overview-space-time-02.jpg

Pemahaman kita tentang sejarah alam semesta divisualisasikan pada gambar di atas, di mana waktu berjalan dari kiri ke kanan. Bumi kita terbentuk saat alam semesta berumur sekitar 9,2 miliar tahun. Alam semesta pun terus berkembang hingga saat ini. Pada bagian pertama telah disajikan struktur alam semesta pada skala yang lebih besar dan bagaimana pemahaman awal manusia rterhadap alam semesta. Sedangkan pada bagian kedua kita akan berbicara tentang Big Bang dan melihat bagaimana perkembangan alam semesta sampai sekarang.
Struktur Terbesar di Ruang Angkasa
http://i.space.com/images/i/12761/i02/walls-filaments-voids-10.jpg

Struktur terbesar yang kita tahu adalah filamen galaksi atau kompleks superkluster yang mengelilingi rongga besar di ruang angkasa. Galaksi-galaksi dalam filamen terikat bersama oleh gravitasi. Ketika struktur ini pertama kali ditemukan oleh Margaret Geller dan Yohanes Huchra pada tahun 1989, itu dijuluki “Great Wall.” Namun, masih ada suatu struktur yang jauh lebih besar, “Sloan Great Wall,” yang ditemukan pada tahun 2003 oleh J. Richard Gott III dan Mario Jurić. Saat ini, penelitian terhadap struktur berskala besar alam semesta menggunakan data yang dikumpulkan oleh survei redshift, seperti Sloan Digital Sky Survey. Upaya ini menggunakan sensor kamera digital untuk memotret kawasan langit, menangkap jutaan obyek yang jauh dan data yang diperlukan untuk memetakan mereka dalam ruang 3-D.
Alam Semesta Terjauh
http://i.space.com/images/i/12762/i02/observable-universe-11.jpg


Alam semesta teramati adalah segala sesuatu yang dapat kita deteksi. Ini adalah sebuah bola diameter 93 miliar tahun cahaya yang berpusat di Bumi. Kita tidak dapat merasakan seluruh alam semesta sekaligus karena lambatnya kecepatan cahaya dibandingkan dengan skala besar alam semesta. Saat kita melihat angkasa, kita melihat benda-benda sebagaimana para leluhur melihat mereka dulu. Peningkatan perluasan alam semesta, benda-benda jauh yang lebih jauh dari usia mereka akan membuat kita berpikir. Misalnya, tepi alam semesta yang teramati jauhnya kira-kira 46 miliar tahun cahaya, meskipun usia alam semesta “hanya” 13,7 miliar tahun. Luas alam semesta yang sebenarnya tidak diketahui secara pasti. Alam semesta bisa saja jauh lebih luas dari apa yang kita amati dan mungkin tak terbatas dalam ukuran. Cahaya dari kawasan yang paling jauh tidak akan pernah mampu mencapai kita. Untuk gambar alam semesta teramati yang ada saat ini, kita berutang banyak pada fisikawan Amerika, Alan Guth. Pada 1980-an ia berusaha mencari tahu tentang bagaimana alam semesta muncul dari peristiwa Big Bang.
Waktu Nol: Big Bang
http://i.space.com/images/i/12763/i02/time-zero-big-bang-01.jpg

Pada awal abad 20, astronom dan imam Katolik Belgia, Georges Lemaitre, menghitung perkembangan alam semesta. Secara matematis, alam semesta menjalankan ekspansi mundur. Lemaitre berteori bahwa segala sesuatu di alam semesta pada satu waktu merapat [menyatu] menjadi sesuatu yang kecil dan padat. Sesuatu itu ia sebut “atom purba.” Atom tersebut meledak, sebuah peristiwa yang disebut oleh astronom Fred Hoyle sebagai “Big Bang.” Perluasan alam semesta menjelaskan mengapa cahaya obyek jauh bergeser ke arah ujung merah spektrum, sebuah fenomena yang disebut “redshift.” Sama seperti efek Doppler di amna suara kendaraan yang bergerak berubah nada, redshift menyebabkan cahaya bintang-bintang yang bergerak berubah warna sebagaimana panjang gelombangnya akan membentang dikarenakan oleh perluasan ruang. Semakin jauh sebuah objek dari bumi, intervensi ruang akan semakin berkembang dan makin banyak cahaya objek yang akan bergeser ke arah merah. Astronom Amerika, Edwin Hubble, kemudian membuktikan dengan pengamatan di mana redshift memang terkait dengan jarak. Korelasi tersebut sekarang dikenal sebagai hukum Hubble.
Waktu 1 Detik: Inflasi Awal
http://i.space.com/images/i/12764/i02/time-inflation-earliest-seconds-02.jpg

Para astronom pada tahun 1970-an punya masalah dalam memahami alam semesta awal. Ketika mereka memeriksa ruang angkasa dengan teleskop radio, mereka menemukan radiasi gelombang mikro dengan latar cahaya samar. Variasi kepadatan sinyal gelombang mikro diinterpretasikan sebagai variasi kepadatan materi di alam semesta awal. Anehnya, latar cahaya radiasi seragam ke segala arah. Ini tampaknya tidak masuk akal; ilmuwan berharap untuk menemukan daerah dengan kepadatan ruang dan suhu yang berbeda karena daerah ini tampak terlalu jauh untuk berevolusi bersama. Fisikawan Amerika, Alan Guth, mengusulkan penjelasannya pada tahun 1980. Ia berteori bahwa dalam fraksi kecil dalam waktu hanya mengikuti Big Bang. Alam semesta pun mengalami ekspansi dengan sangat cepat. Dalam sekejap, volumenya meningkat dengan faktor 10ˆ78 (angka 10 diikuti dengan 78 nol) dan peristiwa yang disebut “inflasi” berakhir. Model inflasi menjelaskan mengapa alam semesta muncul seragam di semua arah: segala sesuatu di dalamnya berkembang bersama-sama sebelum inflasi. Ini memiliki implikasi mengejutkan lainnya, yaitu bagian ruang yang dapat kita lihat hanya merupakan sepetak kecil dalam apa yang seharusnya menjadi alam semesta yang luas dan tidak dapat dideteksi secara langsung.

Waktu 1 Detik - 3 Menit: Kuark
http://i.space.com/images/i/12765/i02/quark-gluon-plasma-03.jpg
Setelah inflasi, terjadi pendinginan meski masih tak terbayangkan betapa panas alam semesta saat mengalami transisi fase. Partikel dasar diciptakan dari bentuk materi yang disebut quark-gluon plasma. Seperseribu detik setelah Big Bang, sejumlah besar materi dan antimateri saling memusnahkan (meninggalkan materi yang ada di alam semesta saat ini). Dalam waktu tiga menit suhu alam semesta turun menjadi sekitar satu miliar derajat dan atom mulai terbentuk yang dimulai dari unsur sederhana: hidrogen dan helium. Plasma quark-gluon alam semesta awal masih bersifat teoritis dan dianggap menjadi kemungkinan karena sebuah teori yang disebut Quantum Chromodynamics. Pertama kali, teori ini dirumuskan fisikawan Amerika, Murray Gell-Mann. Partikel-partikel nuklir dasar, proton dan neutron, yang diperkirakan terbuat dari partikel yang lebih fundamental yang disebut “quark.” Quark tidak pernah ditemukan bepergian sendirian kecuali di bawah suhu yang sangat tinggi, seperti saat setelah Big Bang. Fisikawan mencoba untuk menciptakan kembali plasma yang diperkirakan telah membentuk alam semesta awal di bumi itu. Mereka menggunakan akselerator partikel untuk menghancurkan partikel-partikel subatomik.
Waktu 3 Menit - 379.000 Tahun: Masa Gelap
http://i.space.com/images/i/12766/i02/dark-age-hot-opaque-04.jpg

Selama periode ini, kondisi alam semesta awal panas dan buram. Dimulai pada sekitar 379.000 tahun setelah Big Bang, alam semesta cukup dingin sehingga cahaya bisa memisahkan diri dari materi dan bepergian dengan bebas. Singkatnya, alam semesta menjadi transparan. Foto ini menunjukkan galaksi UDFy-38135539, salah satu galaksi tertua dan paling awal yang pernah ditemukan. Galaksi ini muncul tepat setelah Dark Age, sekitar 480 juta tahun setelah Big Bang.
Waktu 379.000 Tahun - 1 Milyar Tahun: Kelahiran Violent
Selama periode ini, alam semesta awal masih panas dan buram. Dimulai pada sekitar 379.000 tahun setelah Big Bang, alam semesta cukup dingin. Pada tahun 1960, astronom Belanda, Maarten Schmidt, mengidentifikasi benda dalam ruang angkasa yang aneh: sangat terang pada panjang gelombang radio. Ia menyebutnya sebagai “quasi-stellar radio sources.” Sementara astrofisikawan AS, Hong-Yee Chiu, menamai fenomena itu “quasar.” Quasar tertangkap pada tahun 1950 oleh teleskop radio. Ketika Schmidt mengukur jarak quasar dengan mempelajari redshift dari spektrum mereka, apa yang ia temukan sungguh menakjubkan. Benda-benda itu miliaran tahun cahaya jauhnya sehingga sangat terang untuk dapat dideteksi di bumi. Kemudian studi menunjukkan bahwa quasar merupakan galaksi aktif yang telah terbentuk sangat awal dalam sejarah alam semesta. Keruntuhan gravitasi menyebabkan materi menyatu dan akhirnya membentuk lubang hitam raksasa dengan massa miliaran matahari. Sebuah lubang hitam berposisi di tengah-tengah sebuah quasar, mengumpulkan materi dan memanaskannya untuk menjadikannya sebagai plasma bersuhu tinggi yang dapat melakukan perjalanan mendekati kecepatan cahaya. Cahaya itu terpisah dari materi dan bepergian dengan bebas. Singkatnya, alam semesta menjadi transparan. Foto ini menunjukkan galaksi UDFy-38135539, salah satu galaksi tertua dan paling awal yang pernah ditemukan, yang muncul tepat setelah Dark Age sekitar 480 juta tahun setelah Big Bang.
Waktu 1 Milyar Tahun - 9 Milyar Tahun: Tata Surya & Galaksi
Bintang-bintang paling awal terbentuk ketika alam semesta berusia 300 juta tahun. Mereka berusia pendek dan supermasif. Sebagian besar terdiri dari hidrogen dan helium serta tidak mengandung logam. Bintang-bintang tersebut meledak menjadi supernova pertama dan generasi berikutnya tercipta dari sisa-sisa matahari awal. Analisis spektrum cahaya matahari menunjukkan bahwa sisa-sisa matahari awal kaya akan logam. Sumber daya matahari adalah misteri sampai kemudian fisikawan Jerman, Albert Einstein, pada tahun 1905 menyatakan bahwa materi dapat dikonversi menjadi energi dengan persamaan E=mcˆ2. Pada tahun 1920, astrofisikawan Inggris, Sir Arthur Eddington menyarankan bahwa matahari mungkin mendukung sebuah reaktor fusi nuklir yang menghasilkan panas dan energi cahaya dengan mengubah hidrogen menjadi helium. Studi spektrum cahaya matahari dan bintang lainnya menumbuhkan konfirmasi bahwa proses fusi nuklir menciptakan unsur-unsur atom.
Waktu Sekarang: Kehidupan
Para ilmuwan telah mengumpulkan gambaran yang mengesankan dari sejarah, asal usul dan sifat alam semesta kita. Namun, kita tidak tahu segala sesuatu yang perlu diketahui. Masih banyak pertanyaan dalam bidang fisika dan kosmologi. Sebagai contoh: 
Apakah materi gelap dan apakah hal itu benar-benar ada? 
Mengapa ekspansi alam semesta tampak cepat? 
Bagaimana bentuk aktual dan ukuran alam semesta dan berapa banyak dimensi yang dimilikinya? 
Bagaimana nasib akhir alam semesta?

Minggu, 18 Maret 2012

Pengertian Danau

Danau adalah sejumlah air (tawar atau asin) yang terakumulasi di suatu tempat yang cukup luas, yang dapat terjadi karena mencairnya gletser, aliran sungai, atau karena adanya mata air. Biasanya danau dapat dipakai sebagai sarana rekreasi, dan olahraga.
Danau adalah cekungan besar di permukaan bumi yang digenangi oleh air bisa tawar ataupun asin yang seluruh cekungan tersebut dikelilingi oleh daratan.
Kebanyakan danau adalah air tawar dan juga banyak berada di belahan bumi utara pada ketinggian yang lebih atas.
Sebuah danau periglasial adalah danau yang di salah satunya terbentuk lapisan es, "ice cap" atau gletser, es ini menutupi aliran air keluar danau.
Istilah danau juga digunakan untuk menggambarkan fenomena seperti Danau Eyre, di mana danau ini kering di banyak waktu dan hanya terisi pada saat musim hujan. Banyak danau adalah buatan dan sengaja dibangun untuk penyediaan tenaga listrik-hidro, rekreasi (berenang, selancar angin, dll), persediaan air, dll.
Finlandia dikenal sebagai "Tanah Seribu Danau" dan Minnesota dikenal sebagai "Tanah Sepuluh Ribu Danau". Great Lakes di Amerika Utara juga memiliki asal dari zaman es. Sekitar 60% danau dunia terletak di Kanada; ini dikarenakan sistem pengaliran kacau yang mendominasi negara ini.
Di bulan ada wilayah gelap berbasal, mirip mare bulan tetapi lebih kecil, yang disebut lacus (dari bahasa Latin yang berarti "danau"). Mereka diperkirakan oleh para astronom sebagai danau.
Berdasarkan proses terjadinya, danau dibedakan :
  1. danau tektonik yaitu danau yang terbentuk akibat penurunan muka bumi karena pergeseran / patahan
  2. danau vulkanik yaitu danau yang terbentuk akibat aktivitas vulkanisme / gunung berapi
  3. danau tektovulkanik yaitu danau yang terbentuk akibat percampuran aktivitas tektonisme dan vulkanisme
  4. danau bendungan alami yaitu danau yang terbentuk akibat lembah sungai terbendung oleh aliran lava saat erupsi terjadi
  5. danau karst yaitu danau yang terbentuk akibat pelarutan tanah kapur
  6. danau glasial yaitu danau yang terbentuk akibat mencairnya es / keringnya daerah es yang kemudian terisi air
  7. danau buatan yaitu danau yang terbentuk akibat aktivitas manusia
  8. Danau terbesar di dunia adalah Laut Kaspia. Dengan luas permukaan 394.299 km², ia memiliki wilayah yang lebih besar dari enam danau terbesar berikut digabungkan menjadi satu.
  9. Danau air tawar terbesar, dan kedua terbesar adalah Danau Superior dengan luas permukaan 82.414 km².
  10. Danau terdalam adalah Danau Baikal di Siberia, dengan kedalaman 1.741 meter (5.712 kaki).
  11. Danau tertinggi yang dapat dinavigasi adalah Danau Titicaca, pada ketinggian 3.821 m di atas permukaan laut. Dia juga merupakan danau terbesar kedua di Amerika Selatan.
  12. Danau terendah di dunia adalah Laut Mati, pada 396 m (1.302 kaki) di bawah permukaan laut. Dia juga merupakan danau yang memiliki konsentrasi garam paling tinggi.
  13. Pulau terbesar di tengah danau air tawar adalah Pulau Manitoulin di Danau Huron, dengan luas permukaan 2.766 km².
  14. Danau terbesar yang terletak di pulau adalah Danau Nettiling di Pulau Baffin.
  15. Danau Toba di pulau Sumatra kemungkinan terletak di kawah gunung berapi pasif terbesar di dunia.

http://upload.wikimedia.org/wikipedia/commons/8/8a/Panoramaninjau.jpg

Proses terjadinya Letusan Gunung Berapi

Proses terjadinya Letusan Gunung Berapi

Dalam beberapa letusan, gumpalan awan besar naik ke atas gunung, dan sungai lava mengalir pada sisi-sisi gunung tersebut. Dalam letusan yang lain, abu merah panas dan bara api menyembur keluar dari puncak gunung, dan bongkahan batu-batu panas besar terlempar tinggi ke udara. Sebagian kecil letusan memiliki kekuatan yang sangat besar, begitu besar sehingga dapat memecah-belah gunung
Pada dasarnya, gunung berapi terbentuk dari magma, yaitu batuan cair yang terdalam di dalam bumi. Magma terbentuk akibat panasnya suhu di dalam interior bumi. Pada kedalaman tertentu, suhu panas ini sangat tinggi sehingga mampu melelehkan batu-batuan di dalam bumi. Saat batuan ini meleleh, dihasilkanlah gas yang kemudian bercampur dengan magma. Sebagian besar magma terbentuk pada kedalaman 60 hingga 160 km di bawah permukaan bumi. Sebagian lainnya terbentuk pada kedalaman 24 hingga 48 km
Magma yang mengandung gas, sedikit demi sedikit naik ke permukaan karena massanya yang lebih ringan dibanding batu-batuan padat di sekelilingnya. Saat magma naik, magma tersebut melelehkan batu-batuan di dekatnya sehingga terbentuklah kabin yang besar pada kedalaman sekitar 3 km dari permukaan. Magma chamber inilah yang merupakan gudang (reservoir) darimana letusan material-material vulkanik berasal
Magma yang mengandung gas dalam kabin magma berada dalam kondisi di bawah tekanan batu-batuan berat yang mengelilinginya. Tekanan ini menyebabkan magma meletus atau melelehkan conduit (saluran) pada bagian batuan yang rapuh atau retak. Magma bergerak keluar melalui saluran ini menuju ke permukaan. Saat magma mendekati permukaan, kandungan gas di dalamnya terlepas. Gas dan magma ini bersama-sama meledak dan membentuk lubang yang disebut lubang utama (central vent). Sebagian besar magma dan material vulkanik lainnya kemudian menyembur keluar melalui lubang ini. Setelah semburan berhenti, kawah (crater) yang menyerupai mangkuk biasanya terbentuk pada bagian puncak gunung berapi. Sementara lubang utama terdapat di dasar kawah tersebut
enampang bumi. Kerak yang menindih mantel hampir seluruhnya terdiri dari oksida yang tidak melebur. Proses vulkanik membawa fragmen batuan ke permukaan dari kedalaman lk. 200 km melalui mantel, hal tersebut ditunjukkan dengan adanya mineral-mineral olivine, piroksen dan garnet dalam peridotit pada bagian atas mantel

Pengetahuan tentang lempeng tektonik merupakan pemecahan awal dari teka-teki fenomena alam termasuk deretan pegunungan, benua, gempabumi dan gunungapi. Planet bumi mepunyai banyak cairan dan air di permukaan. Kedua factor tersebut sangat mempengaruhi pembentukan dan komposisi magma serta lokasi dan kejadian gunungapi

Panas bagian dalam bumi merupakan panas yang dibentuk selama pembentukan bumi sekitar 4,5 miliar tahun lalu, bersamaan dengan panas yang timbul dari unsure radioaktif alami, seperti elemen-elemen isotop K, U dan Th terhadap waktu. Bumi pada saat terbentuk lebih panas, tetapi kemudian mendingin secara berangsur sesuai dengan perkembangan sejarahnya. Pendinginan tersebut terjadi akibat pelepasan panas dan intensitas vulkanisma di permukaan. Perambatan panas dari dalam bumi ke permukaan berupa konveksi, dimana material-material yang terpanaskan pada dasar mantel, kedalaman 2.900 km di bawah muka bumi bergerak menyebar dan menyempit disekitarnya.

Pada bagian atas mantel, sekitar 7 35 km di bawah muka bumi, material-material tersebut mendingin dan menjadi padat, kemudian tenggelam lagi ke dalam aliran konveksi tersebut. Litosfir termasuk juga kerak umumnya mempunyai ketebalan 70 120 km dan terpecah menjadi beberapa fragmen besar yang disebut lempeng tektonik. Lempeng bergerak satu sama lain dan juga menembus ke arah konveksi mantel. Bagian alas litosfir melengser di atas zona lemah bagian atas mantel, yang disebut juga astenosfir. Bagian lemah astenosfir terjadi pada saat atau dekat suhu dimana mulai terjadi pelelehan, kosekuensinya beberapa bagian astenosfir melebur, walaupun sebagian besar masih padat. Kerak benua mempunyai tebal lk. 35 km, berdensiti rendah dan berumur 1 2 miliar tahun, sedangkan kerak samudera lebih tipis (lk. 7 km), lebih padat dan berumur tidak lebih dari 200 juta tahun. Kerak benua posisinya lebih di atas dari pada kerak samudera karena perbedaan berat jenis, dan keduanya mengapung di atas astenosfir.

Struktur gunung api, terdiri atas:
1. Struktur kawah adalah bentuk morfologi negatif ataudepresi akibat kegiatan suatu gunungapi, bentuknya relatif bundar

2. Kaldera, bentukmorfologinya seperti kawah tetapi garis tengahnya lebih dari 2 km. Kaldera terdiri atas : kalderaletusan, terjadi akibat letusan besar yang melontarkan sebagian besar tubuhnya; kalderaruntuhan, terjadi karena runtuhnya sebagian tubuh gunungapi akibat pengeluaran material yangsangat banyak dari dapur magma; kaldera resurgent, terjadi akibat runtuhnya sebagian tubuhgunungapi diikuti dengan runtuhnya blok bagian tengah; kaldera erosi, terjadi akibat erosi terusmenerus pada dinding kawah sehingga melebar menjadi kaldera

3. Rekahan dan graben, retaka-retakan atau patahan pada tubuh gunungapi yang memanjang mencapai puluhankilometer dan dalamnya ribuan meter. Rekahan parallel yang mengakibatkan amblasnya blok diantara rekahan disebut graben

4. Depresi volkano-tektonik, pembentukannya ditandai dengan deretan pegunungan yang berasosiasi dengan pemebentukan gunungapi akibat ekspansi volumebesar magma asam ke permukaan yang berasal dari kerak bumi. Depresi ini dapat mencapaiukuran puluhan kilometer dengan kedalaman ribuan meter

Tipe-tipe gunung api berdasarkan bentuknya (morfologi):
1. Stratovolcano, Tersusun dari batuan hasil letusan dengan tipe letusan berubah-ubah sehingga dapat menghasilkan susunan yang berlapis-lapis dari beberapa jenis batuan, sehingga membentuk suatu kerucut besar (raksasa), terkadang bentuknya tidak beraturan, karena letusan terjadi sudah beberapa ratus kali

2. Perisai, Tersusun dari batuan aliran lava yang pada saat diendapkan masih cair, sehingga tidak sempat membentuk suatu kerucut yang tinggi (curam), bentuknya akan berlereng landai, dan susunannya terdiri dari batuan yang bersifat basaltik. Contoh bentuk gunung berapi ini terdapat di kepulauan Hawai

3. Cinder Cone, Merupakan gunung berapi yang abu dan pecahan kecil batuan vulkanik menyebar di sekeliling gunung. Sebagian besar gunung jenis ini membentuk mangkuk di puncaknya. Jarang yang tingginya di atas 500 meter dari tanah di sekitarnya

4. Kaldera, Gunung berapi jenis ini terbentuk dari ledakan yang sangat kuat yang melempar ujung atas gunung sehingga membentuk cekungan.Gunung Bromo merupakan jenis ini

BAGAIMANA GUNUNGAPI TERBENTUK?
Gunung api terbentuk pada empat busur, yaitu busur tengah benua, terbentuk akibat pemekarankerak benua; busur tepi benua, terbentuk akibat penunjaman kerak samudara ke kerak benua;busur tengah samudera, terjadi akibat pemekaran kerak samudera; dan busur dasar samuderayang terjadi akibat terobosan magma basa pada penipisan kerak samudera
Penampang yang memperlihat kan batas lempeng utama dengan dengan pembentukan busur gunungapi

pergerakan antar lempeng ini menimbulkan empat busur gunungapi berbeda:
1. Pemekaran kerak benua, lempeng bergerak saling menjauh sehingga memberikan kesempatan magma bergerak ke permukaan, kemudian membentuk busur gunungapi tengah samudera.

2. Tumbukan antar kerak, dimana kerak samudera menunjam di bawah kerak benua. Akibat gesekan antar kerak tersebut terjadi peleburan batuan dan lelehan batuan ini bergerak ke permukaan melalui rekahan kemudian membentuk busur gunungapi di tepi benua.

3. Kerak benua menjauh satu sama lain secara horizontal, sehingga menimbulkan rekahan atau patahan. Patahan atau rekahan tersebut menjadi jalan ke permukaan lelehan batuan atau magma sehingga membentuk busur gunungapi tengah benua atau banjir lava sepanjang rekahan.

4. Penipisan kerak samudera akibat pergerakan lempeng memberikan kesempatan bagi magma menerobos ke dasar samudera, terobosan magma ini merupakan banjir lava yang membentuk deretan gunungapi perisai.
penampang diagram yang memper lihatkan bagaimana gunungapi ter bentuk di permukaan melalui kerak benua dan kerak samudera serta mekanisme peleburan batuan yang menghasilkan busur gunungapi, busur gunungapi tengah samudera, busur gunungapi tengah benua dan busur gunungapi dasar samudera

di indonesia (jawa dan sumatera) pembentukan gunungapi terjadi akibat tumbukan kerak samudera hindia dengan kerak benua asia. Di sumatra penunjaman lebih kuat dan dalam sehingga bagian akresi muncul ke permukaan membentuk pulau-pulau, seperti nias, mentawai, dll